МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

заведующий кафедрой биофизики и биотехнологии В.Г. Артюхов 01.06.2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.Б.29 Медицинская биофизика

1. Шифр и наименование специальности:
30.05.01 Медицинская биохимия
2. Специализация:
3. Квалификация (степень) выпускника:
врач-биохимик
4. Форма обучения:
очная
5. Кафедра, отвечающая за реализацию дисциплины:
биофизики и биотехнологии
6. Составители программы:
Артюхов Валерий Григорьевич, доктор биологических наук, профессор
7. Рекомендована: НМС медико-биологического факультета, протокол № 5 от
01.06.2020.

8. Учебный год: 2023/2024

Семестр(ы): 6

9. Цели и задачи учебной дисциплины:

Цель: изучение основ медицинской биофизики, формирование у студентов современного научного мировоззрения, освоение ими основных теоретических положений биофизики как самостоятельной науки, приобретение знаний о физико-химических процессах и механизмах, которые лежат в основе жизнедеятельности биологических объектов.

Задачи дисциплины: - изучить основные положения медицинской биофизики: внешние электрические поля тканей и органов; гемодинамику; механические явления при сокращении мышц; физико-химические механизмы патологии: роль повреждения различных структур клетки в развитии патологии; фосфолипазное повреждение мембран; пероксидное окисление липидов; осмотическое нарушение структуры и функции клеток; нарушение клеточной поверхности и межклеточных взаимодействий; биофизические механизмы фотобиологических процессов в коже (индукция эритемы, фотоканцерогенез, фотосинтез витамина Д) и в крови;

- научиться проводить качественный и количественный фотометрический анализ; регистрировать производные и дифференциальные спектры поглощения биологически важных веществ; проводить качественный и количественный флуориметрический анализ; рассчитывать квантовые выходы фотолиза и инактивации белков; оценивать структурные перестройки в белках методом флуориметрии; регистрировать хемилюминесценцию, определять параметры биосистемы по кинетическим кривым хемилюминесценции; строить линейные и нелинейные математические модели кинетики и транспорта веществ в организме; формулировать и планировать задачи исследований в биофизике, воспроизводить современные методы исследования и разрабатывать новые методические подходы для решения задач медико-биологических исследований; интерпретировать результаты лабораторных исследований;

10. Место учебной дисциплины в структуре ООП:

Учебная дисциплина «Медицинская биофизика» относится к обязательным дисциплинам базовой части Блока 1 «Дисциплины (модули)» Федерального государственного образовательного стандарта высшего образования по специальности 30.05.01 Медицинская биохимия (специалист).

Требования к входным знаниям, умениям и навыкам: готовность решать профессиональной деятельности с использованием стандартные задачи информационных, библиографических ресурсов, медико-биологической терминологии, информационно-коммуникационных технологий и учетом основных информационной безопасности: готовность к использованию основных физико-химических, математических и иных естественнонаучных понятий и методов при решении профессиональных задач; готовность к оценке результатов лабораторных, инструментальных, патолого-анатомических и иных исследований в целях распознавания состояния или установления факта наличия или отсутствия заболевания.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируемые результаты обучения
Код	Название	
ОПК-7	способность к оценке морфофункциональных,	знать: теоретическое содержание курса, понятия, теории и законы медицинской биофизики;
	физиологических состояний и	уметь: использовать полученные знания в сфере

	•	
	патологических процессов в организме человека для	профессиональной деятельности для решения новых задач; воспринимать инновации в целях
	решения профессиональных	совершенствования своей профессиональной
	задач	деятельности
		владеть: навыками экспериментальной работы и
		соблюдения правил техники безопасности; методами
		наблюдения и интерпретации экспериментальных
		данных, теоретическими и практическими основами
		биофизических методов исследования живых систем
ПК-5	готовностью к оценке	знать: важнейшие биофизические явления,
	результатов лабораторных,	происходящие в тканях, органах и их системах в
	инструментальных, патолого-	процессе функционирования в норме и при патологии
	анатомических и иных	уметь: терминологией данной дисциплины; способностью
	исследований в целях	к системному мышлению; навыками поиска учебной и
	распознавания состояния или	научной литературы по заданной теме, в том числе с
	установления факта наличия	использованием информационно-коммуникационных
	или отсутствия заболевания	технологий, написания реферативных работ на основе
		обобщения и анализа литературных данных, подготовки
		презентаций и представления научного доклада, участия
		в дискуссии, научной аргументации своей точки зрения

12. Объем дисциплины в зачетных единицах/час. — 4 ЗЕТ / 144 ч.

Форма промежуточной аттестации экзамен.

13. Виды учебной работы

		Трудоемкость
Вид учебной работы	Всего	По семестрам
		Семестр 7
Аудиторные занятия	48	48
в том числе: лекции	16	16
практические	-	-
лабораторные	32	32
Самостоятельная работа	60	60
Форма промежуточной аттестации	36	36
экзамен		
Итого:	144	144

13.1. Содержание дисциплины

Nº	Наименование раздела	Содержание раздела дисциплины
п/п	дисциплины	
		1. Лекции
1.1	Предмет и задачи медицинской биофизики. Проблемы современной биофизики.	Предмет и задачи медицинской биофизики. Проблемы современной медицинской биофизики, перспективы ее развития
1.2	Гемодинамика	Общие вопросы механики и гемодинамики: понятие положения, скорости, ускорения. Законы движения жидких тел. Основы механики жидкостей: напряжение, гидростатическое давление, вязкость. Виды вязкости. Ньютоновские и неньютоновские жидкости. Теорема Бернулли. Движение жидкости в трубках. Пуазелевское течение жидкости в трубке, число Рейнольдса, турбулентность при течении в трубке. Течение жидкости в сужающейся, изогнутой трубке, обтекание тел. Гемодинамические основы кровообращения. Линейная и

		of online evenesti knopeteva Meterii ususpellis evenesti
		объемная скорость кровотока. Методы измерения скорости движения крови. Градиент скорости течения крови.
1.3	Молекулярная биофизика в медицине.	Биофизика белка и нуклеиновых кислот. Фолдинг белков. Болезни человека, связанные с нарушением фолдинга. Методы молекулярной биофизики (различные виды электрофореза, гель-фильтрации, ультрацентрифугирования, спектрофотометрии, люминесцентного анализа, массспектроскопии и др.) в клинической практике.
1.4	Биофизика мембран. Пероксидное окисление липидов и антиоксидантная	Модельные липидные мембраны. Применение липосом при изготовлении лекарств. Механизмы транспорта веществ через биологические
	система.	мембраны. Виды ионных каналов, регуляция их работы. Свободнорадикальные процессы в биомембранах. Пероксидное окисление липидов мембран.
		Современная модель мембраны и роль липидов в функционировании мембран. Мембранные рафты. Холестерин как компонент клеточных мембран, его роль в развитии патологий. Типы клеточной гибели. Апоптоз и некроз. Их роль в развитии
		патологий. Нарушение работы мембранных систем как одна из причин патологий в функционирования клеток (биологическая смерть клеток при гипоксии, интоксикациях, механических
		повреждениях тканей, отморожениях и ожогах, действии ионизирующих излучений). Нарушения функционирования мембран как следствие
		изменения активности работы мембранных ферментов, деятельности мембранных рецепторов или ионных каналов. Роль мембранных структур при заболеваниях нервной системы, при развитии атеросклероза и ишемической болезни
4.5	Tue diverse personne	сердца.
1.5	Биофизика рецепции.	Фоторецепция, ее молекулярные механизмы. Строение палочек и колбочек. Фотохимические превращения родопсина. Биофизика слуха. Слуховые рецепторы, механизм рецепции звуковых колебаний. Типы клеточных рецепторов. Механизм передачи сигнала в
		клетку. Лиганд-рецепторное взаимодействие. Первичные и вторичные мессенджеры. Механизм действия гормонов.
1.6	Биофизика клеточной подвижности и мышечного сокращения	Механизм возникновения автоколебаний в биологических системах, распространение автоволн в возбудимых средах. Реакция Белоусова — Жаботинского как модель возникновения автоколебаний.
		Проблемы хронобиологии, использование принципов хрономедицины в разработке методов лечения аритмий сердца и других заболеваний, связанных со спонтанной возбудимостью нервных и мышечных тканей.
		Изучение автоколебаний с помощью методов математического моделирования.
1.7	Радиационная биофизика	Физико-дозиметрические основы действия ионизирующих излучений. Молекулярные аспекты биологического действия ионизирующих излучений. Механизмы поглощения энергии ионизирующих излучений.
		Взаимодействие разных видов ионизирующего излучения с биомолекулами. Механизм развития лучевого поражения. Проявление лучевого поражения на уровне клетки. Теоретические представления о механизме биологического действия ионизирующих излучений. Лучевая болезнь человека. Опосредованные и отдаленные эффекты облучения.
1.8	Квантовая биофизика. Фотобиология и фотомедицина	Способы дезактивации возбужденных состояний. Люминесценция. Флуоресцентные метки и зонды, их применение в медицине. Фотобиологические процессы и их стадии. Фотохимические превращения биополимеров и биомембран.

		Основные направления фотомедицины. Фототерапия. Фотодинамическая терапия. Фотопротекторы и фотосенсибилизаторы, механизмы их действия. Понятие об индуцированном излучении. Принцип действия гелий-неонового лазера, его применение в медицине. 2. Практические занятия
		Не предусмотрены
		3. Лабораторные работы
3.2	Гемодинамика	Виды вязкости. Определение вязкости различных растворов. Характеристическая вязкость биополимеров. Ньютоновские и неньютоновские жидкости. Решение задач по теме
3.3	Молекулярная биофизика в медицине.	Применение гель-фильтрации, электрофореза, спектрофотометрии, люминесцентного анализа в биологических исследованиях.
3.4	Биофизика мембран. Пероксидное окисление липидов и антиоксидантная система.	антиоксидантной системы человека. Влияние физических
3.4	Биофизика мембран. Пероксидное окисление липидов и антиоксидантная система	изготовлении лекарств.
3.6	Биофизика клеточной подвижности и мышечного сокращения	Изучение автоколебаний с помощью методов математического моделирования.
3.7	Радиационная биофизика	Физико-дозиметрические основы действия ионизирующих излучений.
3.8	Квантовая биофизика. Фотобиология и фотомедицина	Механизмы терапевтического действия УФ-света на кровь. Исследование влияния УФ-света на функциональные свойства лимфоцитов. Механизм фотоиндуцированного гемолиза эритроцитов. Влияние фотопротекторов и фотосенсибилизаторов на фотоиндуцированный гемолиз эритроцитов.

13.2. Темы (разделы) дисциплины и виды занятий

Nº		Виды занятий (часов)				
п/ п	Наименование раздела дисциплины	Лекции	Практиче ские	Лабораторные	Самостояте льная работа	Всего
1	Предмет и задачи медицинской биофизики. Проблемы современной биофизики.	2	-	2	4	8
2	Гемодинамика	2	-	2	8	12
3	Молекулярная биофизика в медицине.	2	-	4	8	14
4	Биофизика мембран. Пероксидное окисление липидов и антиоксидантная система	2	-	8	8	18
5	Биофизика рецепции.	2	-	4	8	14
6	Биофизика клеточной подвижности и мышечного сокращения	2	-	4	8	14
7	Радиационная биофизика	2	-	4	8	14
8	Квантовая биофизика. Фотобиология и фотомедицина	2	-	4	8	14
	Итого:	16	-	32	60	108

14. Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студентов осуществляется с использованием рекомендованных учебников и учебных пособий в ходе подготовки к практическим и лабораторным занятиям. Студенты знакомятся с теоретическим материалом в процессе лекционного курса, самостоятельно прорабатывают и усваивают теоретические знания с использованием рекомендуемой учебной литературы и учебно-методических пособий, согласно указанному списку (п.15).

На лабораторных занятиях студенты в составе малой группы выполняют учебно-исследовательскую работу. В ходе лабораторных работ студенты приобретают навыки проведения эксперимента, умение интерпретировать полученные результаты, обрабатывать и представлять полученные данные. В конце лабораторного занятия результаты и материалы учебно-исследовательской работы докладываются преподавателю, при необходимости обсуждаются в группе (отчет о лабораторном занятии). В случаях пропуска лабораторного занятия по каким-либо причинам студент обязан его самостоятельно выполнить под контролем преподавателя во время индивидуальных консультаций.

Текущая аттестация обеспечивает проверку освоения учебного материала, навыков приобретения знаний, умений И В процессе аудиторной самостоятельной работы студентов, формирования профессиональных компетенций (ОПК-7, ПК-5). Текущая аттестация по дисциплине «Медицинская биофизика» включает в себя регулярные доклады студентов по указанным в ФОС темам, ответы на занятиях и выполнение письменных контрольных работ по каждому разделу дисциплины. При подготовке к докладам студенты изучают и преподавателем конспектируют рекомендуемую учебную самостоятельно осваивают понятийный аппарат. Планирование и организация текущих аттестаций знаний, умений и навыков осуществляется в соответствии с содержанием рабочей программы и календарно-тематическим планом с фонда оценочных средств. Текущая применением аттестация является обязательной, ее результаты оцениваются в балльной системе и по решению кафедры могут быть учтены при промежуточной аттестации обучающихся. Формой промежуточной аттестации знаний, умений и навыков обучающихся является зачет и экзамен.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

e., e e e e	shobhar shiropar year		
№ п/п	Источник		
1.	1. Биофизика : учеб. для вузов / под ред. В.Г. Артюхова. — М. : Академический Проект : Екатеринбург : Деловая книга, 2009. — 294 с.		
2.	Ремизов А.Н. Медицинская и биологическая физика: учеб. для вузов / А.Н. Ремизов. — 2. ГЭОТАР-Медиа, 2016. — 656 с. — ЭБС «Консультант студента» - URL: http://www.studentlibrary.ru/book/ISBN9785970435779.html		

б) дополнительная литература:

№ п/п	Источник		
	Антонов В.Ф. Физика и биофизика : учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш.		
3.	- 2-е изд., испр. и доп М. : ГЭОТАР-Медиа, 2015. 472 с. – ЭБС «Консультант студента»		
	— <url: book="" http:="" isbn9785970435267.html="" www.studentlibrary.ru="">.</url:>		
4.	Курс физики : учебник для студ. вузов, обуч. по естественнонауч. направлениям / А. Н.		
4.	Ремизов, А. Я. Потапенко .— 3-е изд., стер. — М. : Дрофа, 2006 .— 720 с		
	Максимов Г.В. Биофизика возбудимой клетки / Г.В. Максимов .— Москва Ижевск :		
5.	Ижевский институт компьютерных исследований, 2016 .— 207 с. – ЭБО		
5.	«Университетская библиотека online» —		
	<ur>URL:http://biblioclub.ru/index.php?page=book&id=467920></ur>		

Ремизов А.Н. Медицинская и биологическая физика. Сборник задач / А. Н. Ремизов, А. Г. 6. Максина - М. : ГЭОТАР-Медиа, 2014.— 188 с. – ЭБС «Консультант студента» — <URL: http://www.studentlibrary.ru/book/ISBN97859704295561.html>.

в)информационные электронно-образовательные ресурсы ресурсы (официальные ресурсы интернет)*:

I	№ п/п	
	7.	<u>www.lib.vsu.ru</u> – 3НБ ВГУ, ЭБС МЕДФАРМ, ЭБС Университетская библиотека

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник	
1.	Башарина О.В. Спектральные и хроматографические методы анализа биосистем: учеб. материалы к большому практикуму / О.В. Башарина, В.Г. Артюхов Воронеж: Изд-во ВГУ, 2006 65 с. <url: elib="" http:="" method="" sep06135.pdf="" texts="" vsu="" www.lib.vsu.ru=""></url:>	
2.	Практикум по биофизике / [В.Г. Артюхов и др.] ; Воронеж. гос. ун-т ; [под общ. ред. В.Г. Артюхова] .— Воронеж : Издательский дом ВГУ, 2016 .— 313 с.	

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационносправочные системы (при необходимости)

DreamSpark (неограниченное кол-во настольных и серверных операционных систем Microsoft для использования в учебном и научном процессе) - лицензия действует до 31.12.2019, дог. 3010-15/1102-16 от 26.12.2016.

Microsoft Office Professional 2003 Win32 Russian, бессрочная лицензия Academic Open, дог. 0005003907-24374 от 23.10.2006.

Офисная система LibreOffice 4.4.4 (Свободно распространяемое программное обеспечение)

Microsoft Windows Professional 8.1 Russian Upgrade Academic Open License No Level. Бессрочная лицензия Academic OLP, дог. 3010-07/73-14 от 29.05.2014.

Microsoft Office 2013 Russian Academic Open License No Level. Бессрочная лицензия Academic OLP, дог. 3010-07/73-14 от 29.05.2014

- 1. Чтение лекций с использованием слайд-презентаций.
- 2. Образовательный портал «Электронный университет ВГУ» (www.moodle.vsu.ru).
 - 3. Информационные технологии (доступ в Интернет)
 - 4. ЭБС «Консультант студента» МедФарм
 - 5. Консультант плюс информационно-справочная система
 - 6. ЭБС Университетская библиотека ONLAIN

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения	Специализированная мебель, проектор
занятий лекционного типа	Acer X115H DLP, экран для проектора,
(г.Воронеж, площадь	ноутбук Lenovo G580 с возможностью
Университетская, д.1, пом.I, ауд.	подключения к сети «Интернет»
190)	
Помещение для хранения и	Ноутбук Lenovo G580 с возможностью
профилактического обслуживания	подключения к сети «Интернет»
учебного оборудования (г.Воронеж,	
площадь Университетская, д.1,	
пом.І, ауд. 184а)	

Учебная аудитория для проведения занятий семинарского типа, текущего контроля и промежуточной аттестации (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 61)	Специализированная мебель, рН-метр портативный HI83141; дистиллятор, 4 л/ч, нержавеющая сталь без бака накопителя, Liston; дозиметр-радиометр МКГ-01-10/10; микроскоп МБС - 10; микроскоп медицинский БИОМЕД исполнение БИОМЕД 2; рН-метр карманный, короткий электрод; спектрофометр ПромЭкоЛаб ПЭ-5400УФ; вискозиметр
Лаборатория теоретической биофизики (для проведения занятий семинарского типа, текущего контроля и промежуточной аттестации) (г.Воронеж, площадь Университетская, д.1, пом.1, ауд. 59)	Специализированная мебель, проектор SANYO PLS-SL20, экран для проектора, ноутбук ASUS V6800V с возможностью подключения к сети «Интернет»
Помещение для хранения и профилактического обслуживания учебного оборудования (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 66)	Проектор SANYO PLS-SL20, ноутбук ASUS V6800V с возможностью подключения к сети «Интернет»
Дисплейный класс, аудитория для проведения групповых и индивидуальных консультаций, помещение для самостоятельной работы (г.Воронеж, площадь Университетская, д.1, пом.1, ауд. 67)	Специализированная мебель, компьютеры (системный блок Intel Celeron CPU 430 1.8 GHz, монитор Samsung SyncMaster 17) (12 шт.) с возможностью подключения к сети «Интернет»
Компьютерный класс, аудитория для проведения групповых и индивидуальных консультаций, помещение для самостоятельной работы (г.Воронеж, площадь Университетская, д.1, пом.1, ауд. 40/5)	Специализированная мебель, компьютеры (системный блок Pentium Dual Core CPU E6500, монитор LG Flatron L1742 (17 шт.) с возможностью подключения к сети «Интернет»
Компьютерный класс, помещение для самостоятельной работы (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 40/3)	Специализированная мебель, компьютеры (системный блок Intel Core i5-2300 CPU, монитор LG Flatron E2251 (10 шт.) с возможностью подключения к сети «Интернет»

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

		ых результатов обучения	***
Код и содержание компетенции	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний,	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС (средство оценивания)
	умений)		
ОПК-7: способность к оценке морфофункц иональных, физиологиче	знать: теоретическое содержание курса, понятия, теории и законы медицинской биофизики	Предмет и задачи медицинской биофизики. Проблемы современной биофизики. Гемодинамика. Молекулярная биофизика в медицине.	Вопросы для контрольной работы №№ 1-20
ских состояний и патологическ их процессов в организме человека для решения профессиона льных задач	уметь: использовать полученные знания в сфере профессиональной деятельности для решения новых задач; воспринимать инновации в целях совершенствования своей профессиональной деятельности	1. Предмет и задачи медицинской биофизики. Проблемы современной биофизики. 2. Гемодинамика 3. Молекулярная биофизика в медицине. 4. Свободные радикалы в биосистемах. Антиоксиданты, механизм действия. 5. Биофизика мембран. 6. Биоэлектрические потенциалы. 7. Биофизика рецепции. 8. Биофизика клеточной подвижности и мышечного сокращения. 9. Радиационная биофизика. 10. Квантовая биофизика. Фотобиология и фотомедицина	Отчет о выполнении лабораторно й работы
	владеть: навыками экспериментальной работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальных данных, теоретическими и практическими основами биофизических методов исследования живых систем	 Гемодинамика. Молекулярная биофизика в медицине. Свободные радикалы в биосистемах. Антиоксиданты, механизм действия. Биофизика мембран. Биоэлектрические потенциалы. Биофизика клеточной подвижности и мышечного сокращения. Радиационная биофизика. Квантовая биофизика. Фотомедицина 	Отчет о выполнении лабораторно й работы
ПК-5: готовностью к оценке результатов лабораторны х, инструментальных, патолого-анатомически х и иных исследовани	знать: важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функционирования в норме и при патологии	1. Предмет и задачи медицинской биофизики. Проблемы современной биофизики. 4. Свободные радикалы в биосистемах. Антиоксиданты, механизм действия. 5. Биофизика мембран. 6. Биоэлектрические потенциалы. 7. Биофизика рецепции. 8. Биофизика клеточной подвижности и мышечного сокращения. 9. Радиационная биофизика. 10. Квантовая биофизика. Фотобиология и фотомедицина	Вопросы для контрольной работы №№ 21-40
й в целях распознавани я состояния или	уметь: оперировать специальной терминологией, грамотно воспринимать	1. Предмет и задачи медицинской биофизики. Проблемы современной биофизики. 2. Гемодинамика.	Практически е задания №№

сокращения. 9. Радиационная биофизика. 10. Квантовая биофизика. Фотобиология и фотомедицина владеть: терминологией данной дисциплины; способностью к системному мышлению; навыками поиска учебной и научной литературы по заданной теме, в том числе с использованием информационных технологий, написания реферативных работ на основе обобщения и анализа литературных данных, подготовки презентаций и представления научного доклада, участия в дискуссии, научной аргументации своей точки зрения Сокращения. 9. Радиационная биофизика. Вопросы контроль биофизики. Проблемы современной биофизики. 2. Гемодинамика. 3. Молекулярная биофизика в медицине. 4. Свободные радикалы в биосистемах. Антиоксиданты, механизм действия. 5. Биофизика мембран. 6. Биоэлектрические потенциалы. 7. Биофизика рецепции. 8. Биофизика клеточной подвижности и мышечного сокращения. 9. Радиационная биофизика. Фотобиология и фотомедицина КИМ
Промежуточная аттестация Экзамен КИМ

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Оценка результатов обучения на промежуточной аттестации происходит по следующим показателям:

Компе	Показатель	Шкала и критери	и оценивания уро	вня освоения ком	петенции
тенци	сформированнос	5	4	3	2
Я	ти компетенции				
ОПК-7	Знает	В полном	Знает	Выборочно	Демонстрирует
	теоретическое	объеме знает	теоретическое	знает	отрывочные,
	содержание	теоретическое	содержание	теоретическое	фрагментарны
	курса, понятия,	содержание	курса, понятия,	содержание	е знания,
	теории и законы	курса, понятия,	теории и	курса, понятия,	допускает
	медицинской	теории и	законы	теории и	грубые ошибки
	биофизики	законы	медицинской	законы	при ответе на
	Умеет	медицинской	биофизики;	медицинской	вопросы, не
	использовать	биофизики;	умеет	биофизики;	знает
	полученные	умеет	использовать	умеет	теоретическое
	знания в сфере	использовать	полученные	использовать	содержание
	профессиональн	полученные	знания в	полученные	курса, понятия,
	ой деятельности	знания в	сфере	знания в	теории и
	для решения	сфере	профессионал	сфере	законы
	новых задач;	профессионал	ьной	профессионал	медицинской
	воспринимать	ьной	деятельности	ьной	биофизики; не
	инновации в	деятельности	для решения	деятельности	умеет
	целях	для решения	новых задач;	для решения	использовать
	совершенствова	новых задач;	воспринимать	новых задач;	полученные

	ния своей профессиональн ой деятельности Владеет навыками экспериментальн ой работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальн ых данных, теоретическими и практическими основами биофизических методов исследования живых систем	воспринимать инновации в целях совершенствов ания своей профессиональной деятельности; владеет навыками экспериментальной работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальных данных, теоретическим и и практическими основами биофизических методов исследования живых систем	инновации в целях совершенствов ания своей профессиональной деятельности; владеет навыками экспериментальной работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальных данных, теоретическим и и практическими основами биофизических методов исследования живых систем, но допускает незначительны е ошибки, неточности, испытывает затруднения при решении практических	воспринимать инновации в целях совершенствов ания своей профессиональной деятельности; владеет навыками экспериментальной работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальных данных, теоретическим и и практическими основами биофизических методов исследования живых систем	знания в сфере профессиональной деятельности для решения новых задач; воспринимать инновации в целях совершенствов ания своей профессиональной деятельности; не владеет навыками экспериментальной работы и соблюдения правил техники безопасности; методами наблюдения и интерпретации экспериментальных данных, теоретическими и и практическими и и практическими основами биофизических методов исследования живых систем
ПК-5	Знает важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функционирован ия в норме и при патологии Умеет оперировать специальной терминологией, грамотно воспринимать практические проблемы, связанные с биофизикой в целом, и со здоровьем человека, в частности и использовать их в	В полном объеме знает важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функциониров ания в норме и при патологии; умеет оперировать специальной терминологией, грамотно воспринимать практические проблемы, связанные с биофизикой в целом, и со здоровьем человека, в частности и	задач Знает важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функциониров ания в норме и при патологии; умеет оперировать специальной терминологией , грамотно воспринимать практические проблемы, связанные с биофизикой в целом, и со здоровьем человека, в частности и использовать	Частично знает важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функциониров ания в норме и при патологии; умеет оперировать специальной терминологией, грамотно воспринимать практические проблемы, связанные с биофизикой в целом, и со здоровьем человека, в частности и использовать	Демонстрирует отрывочные, фрагментарны е знания, допускает грубые ошибки при ответе на вопросы, не знает важнейшие биофизические явления, происходящие в тканях, органах и их системах в процессе функциониров ания в норме и при патологии; не умеет оперировать специальной терминологией, грамотно воспринимать практические

проблемы, профессиональн использовать их в их в профессионал ой деятельности их в профессионал связанные с профессионал ьной ьной биофизикой в Владеет: терминологией ьной деятельности; деятельности; целом, и со деятельности; владеет: владеет: здоровьем данной терминологией терминологией человека, в дисциплины; владеет: терминологией способностью к данной данной частности и данной дисциплины; дисциплины; использовать системному дисциплины; способностью способностью их в мышлению; профессионал к системному навыками поиска способностью к системному учебной и к системному мышлению; мышлению; ьной мышлению; деятельности; научной навыками навыками поиска учебной поиска учебной литературы по навыками не владеет: заданной теме, в поиска учебной и научной и научной терминологией том числе с и научной литературы по литературы по данной использованием литературы по заданной теме, заданной теме, дисциплины; информационнозаданной теме, в том числе с в том числе с способностью в том числе с использование использование к системному коммуникационн использование мышлению; ых технологий, написания информационн информационн навыками поиска учебной реферативных информационн и научной работ на основе 0коммуникацион коммуникацион литературы по обобщения и коммуникацион ных ных анализа ных технологий, технологий, заданной теме, литературных технологий, написания написания в том числе с написания реферативных реферативных использование данных, реферативных работ на работ на подготовки презентаций и работ на основе основе информационн представления основе обобщения и обобщения и обобщения и анализа анализа коммуникацион научного доклада, участия анализа литературных литературных ных в дискуссии, литературных технологий, данных, данных, подготовки подготовки научной данных, написания презентаций и реферативных аргументации подготовки презентаций и своей точки презентаций и представления представления работ на зрения представления научного научного основе научного обобщения и доклада, доклада. анализа доклада, участия в участия в участия в дискуссии, дискуссии, литературных научной научной дискуссии, данных, аргументации научной аргументации подготовки своей точки аргументации своей точки презентаций и своей точки зрения, но зрения представления зрения допускает научного незначительны доклада, е ошибки, участия в неточности, дискуссии, испытывает научной аргументации затруднения своей точки при решении практических зрения задач

Для оценивания результатов обучения на экзамене используется 4балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка "отлично" выставляется обучающемуся, если он по итогам промежуточной аттестации получил суммарно не менее 9 баллов.

Оценка "хорошо" выставляется обучающемуся, если он по итогам промежуточной аттестации получил суммарно не менее 7 баллов.

Оценка "удовлетворительно" выставляется обучающемуся, если он по итогам промежуточной аттестации получил суммарно не менее 5 баллов.

Оценка "неудовлетворительно" выставляется обучающемуся, если он по итогам промежуточной аттестации получил суммарно менее 5 баллов.

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1. Перечень вопросов к экзамену

- 1. Предмет и задачи медицинской биофизики.
- 2. Проблемы и перспективы развития современной медицинской биофизики.
- 3. Общие вопросы механики и гемодинамики.
- 4. Законы движения жидких тел.
- 5. Основы механики жидкостей: напряжение, гидростатическое давление, вязкость.
- 6. Виды вязкости.
- 7. Закон Ньютона в реологии. Ньютоновские и неньютоновские жидкости.
- 8. Теорема Бернулли. Движение жидкости в трубках.
- 9. Пуазелевское течение жидкости в трубке, число Рейнольдса, турбулентность при течении в трубке.
 - 10. Течение жидкости в сужающейся, изогнутой трубке, обтекание тел.
 - 11. Гемодинамические основы кровообращения.
- 12. Линейная и объемная скорость кровотока. Методы измерения скорости движения крови. Градиент скорости течения крови.
 - 13. Методы определения вязкости крови.
 - 14. Биофизические свойства белка.
 - 15. Фолдинг белков. Опыт Анфинсена. Парадокс Левенталя, его решение.
 - 16. Этапы фолдинга.
 - 17. Шапероны, их функции.
 - 18. Фолдазы, их функции.
 - 19. Болезни человека, связанные с нарушением фолдинга.
 - 20. Методы молекулярной биофизики в клинической практике.
 - 21. Теоретические основы метода электрофореза.
 - 22. Теоретические основы метода гель-фильтрации.
 - 23. Теоретические основы метода ультрацентрифугирования.
 - 24. Теоретические основы люминесцентного анализа.
 - 25. Теоретические основы метода биохемилюминесценции.
 - 26. Индуцированная хемилюминесценция.
 - 27. Кинетика хемилюминесценции.
 - 28. Свободные радикалы в биосистемах. Их роль в норме и при патологии.
 - 29. Активные формы кислорода.
 - 30. Пероксидное окисление липидов.
 - 31. Оксид азота и его биологическая роль.
 - 32. Антиоксиданты, механизм действия.
 - 33. Ферменты антиоксидантной системы, катализируемые ими реакции.
- 34. Болезни человека, связанные с нарушением функционирования антиоксидантной системы.
 - 35. Модельные липидные мембраны.
 - 36. Применение липосом при изготовлении лекарств.
 - 37. Механизмы транспорта веществ через биологические мембраны.
 - 38. Виды ионных каналов, регуляция их работы.
 - 39. Свободнорадикальные процессы в биомембранах.
 - 40. Пероксидное окисление липидов мембран.
 - 41. Современная модель мембраны и роль липидов в функционировании мембран.
 - 42. Мембранные рафты.
 - 43. Холестерин как компонент клеточных мембран, его роль в развитии патологий.

- 44. Типы клеточной гибели. Апоптоз и некроз. Их роль в развитии патологий.
- 45. Нарушение работы мембранных систем как одна из причин патологий в функционирования клеток (биологическая смерть клеток при гипоксии, интоксикациях, механических повреждениях тканей, отморожениях и ожогах, действии ионизирующих излучений).
- 46. Нарушения функционирования мембран как следствие изменения активности работы мембранных ферментов, деятельности мембранных рецепторов или ионных каналов.
- 47. Виды биопотенциалов, механизм формирования потенциала покоя. Уравнения Нернста, Гольдмана, Томаса, Ходжкина-Хаксли.
 - 48. Потенциал действия, его свойства.
 - 49. Особенности потенциала действия сердечной мышцы.
 - 50. Биофизика нервного импульса.
 - 51. Фоторецепция, ее молекулярные механизмы.
 - 52. Строение палочек и колбочек сетчатки глаза.
 - 53. Фотохимические превращения родопсина.
 - 54. Механизм формирования рецепторного потенциала в зрительном рецепторе.
 - 55. Биофизика слуха.
 - 56. Слуховые рецепторы, механизм рецепции звуковых колебаний.
- 57. Типы клеточных рецепторов. Свойства рецепторов. Лиганд-рецепторное взаимодействие.
 - 58. Механизм передачи сигнала в клетку. Первичные и вторичные мессенджеры.
 - 59. Механизм действия гидрофобных гормонов на молекулярно-клеточном уровне.
 - 60. Механизм действия гидрофильных гормонов на молекулярно-клеточном уровне.
- 61. Механизм возникновения автоколебаний в биологических системах распространение автоволн в возбудимых средах.
 - Реакция Белоусова Жаботинского как модель возникновения автоколебаний.
- 63. Проблемы хронобиологии, использование принципов хрономедицины в разработке методов лечения аритмий сердца и других заболеваний, связанных со спонтанной возбудимостью нервных и мышечных тканей.
 - 64. Изучение автоколебаний с помощью методов математического моделирования.
 - 65. Физико-дозиметрические основы действия ионизирующих излучений.
 - 66. Молекулярные аспекты биологического действия ионизирующих излучений.
 - 67. Механизмы поглощения энергии ионизирующих излучений.
 - 68. Взаимодействие разных видов ионизирующего излучения с биомолекулами.
 - 69. Механизм развития лучевого поражения.
 - 70. Проявление лучевого поражения на уровне клетки.
- 71. Теоретические представления о механизме биологического действия ионизирующих излучений.
 - 72. Лучевая болезнь человека.
 - 73. Опосредованные и отдаленные эффекты облучения.
 - 74. Способы дезактивации возбужденных состояний.
- 75. Люминесценция, применение люминесцентного анализа в медицинской диагностике.
 - 76. Флуоресцентные метки и зонды, их применение в медицине.
 - 77. Фотобиологические процессы и их стадии.
 - 78. Фотохимические превращения биополимеров и биомембран.
 - 79. Основные направления фотомедицины.
 - 80. Фототерапия.
 - 81. Механизмы терапевтического действия УФ-света.
 - 82. История применения УФ-облучения крови. Методы УФ-облучения крови.
 - 83. Фотодинамическая терапия.
 - 84. Фотопротекторы, механизмы их действия.
 - 85. Фотосенсибилизаторы, механизмы их действия.
- 86. Фотопротекторы и фотосенсибилизаторы, используемые при методах фотолечения
 - 87. Окислительный стресс при фототерапии.

- 88. Понятие об индуцированном излучении. Лазеры.
- 89. Виды лазеров, особенности их биологического действия
- 90. Лазерное облучение, основные параметры.
- 91. Применение лазерного облучения в медицине.
- 92. Принцип действия гелий-неонового лазера, его применение в медицине.
- 93. Лазерная терапия, механизмы лечебного эффекта.
- 94. Влияние низкоинтенсивного лазерного излучения на мембраны клеток крови.
- 95. Фотоиндуцированный апоптоз и некроз лейкоцитов.

19.3.2 Перечень практических заданий

- І. Биологические мембраны. Структура, свойства
- 1. Удельная электрическая емкость мембраны аксона, измеренная внутриклеточным микроэлектродом, оказалась равной 0,5 микрофарад/см². По формуле плоского конденсатора оценить толщину гидрофобного слоя мембраны с диэлектрической проницаемостью, равной 2.
- 2. Какое расстояние на поверхности мембраны эритроцита проходит молекула фосфолипида за 1 секунду в результате латеральной диффузии? Коэффициент латеральной диффузии принять равным 10⁻¹² м²/с. Сравните с окружностью эритроцита диаметром 8 мкм.
- 3. При фазовом переходе мембранных фосфолипидов из жидкокристаллического состояния в гель толщина бислоя изменяется. Как при этом изменится электрическая емкость мембраны? Как изменится напряженность электрического поля в мембране?
- 4. С помощью спин-меченых молекул фосфолипидов установлен градиент вязкости по толщине мембраны. Опишите эксперимент. Где вязкость выше: у поверхности мембраны или в ее центре?
- 5. Как изменится облегченная диффузия ионов калия с участием молекулы валиномицина после фазового перехода мембранных липидов из жидкокристаллического состояния в гель?
- 6. Осмотический эффект в живых клетках сопровождается их набуханием в гипотоническом растворе и сжатием в гипертоническом. Будет ли наблюдаться осмотический эффект при накоплении ионов натрия по схеме антипорта? схеме симпорта?
- 7. Показать, что уравнение Нернста-Планка сводится к уравнению Фика для диффузий незаряженных частиц.
- 8. Фермент К⁺/Na⁺-ATФаза в плазматической мембране эритроцита совершил шесть циклов. Какое количество ионов натрия и калия при этом было активно транспортировано? Сколько энергии было при этом израсходовано, если гидролиз одного моля ATФ сопровождается освобождением 33,6 кДж? Эффективность процесса энергетического сопряжения условно считать 100 %.
- 9. В клеточных мембранах известны три ионных насоса: K+/Na+- насос, протонный насос, кальциевый насос. Каким образом осуществляется при этом активный транспорт сахаров и аминокислот?
- 10. Возможен ли одновременный трансмембранный перенос ионов калия и натрия по схеме симпорта? По схеме антипорта? По схеме унипорта?
- 11. Объясните биофизический механизм действия яда тетродотоксина и местного анестетика тетраэтил аммония.
- 12. Как соотносятся проницаемости мембраны аксона кальмара для различных ионов в покое и при возбуждении?

II.*Биоэлектрические потенциалы*

- 1. Какой транспорт ионов создает мембранную разность потенциалов: пассивный или активный? Ответ поясните.
- 2. Что больше: скорость распространения электрического сигнала по проводам морского телеграфа или скорость распространения нервного импульса по мембране аксона? Почему?
- 3. Как соотносятся проницаемости мембраны аксона кальмара для различных ионов в покое и при возбуждении?

- 4. Чему равна напряженность электрического поля на мембране в состоянии покоя, если концентрация ионов калия внутри клетки 125 ммоль/л, снаружи 2,5 ммоль/л, а толщина мембраны 8 нм?
- 5. Рассчитайте амплитуду потенциала действия, если концентрация калия и натрия внутри клетки возбудимой ткани соответственно: 125 ммоль/л, 1,5 ммоль/л, а снаружи 2,5 ммоль/л и 125 ммоль/л.

III.Биофизика мышечного сокрашения

- 1. При мышечном сокращении:
- а. Нити актина скользят внутрь саркомера вдоль миозина
- б. Миозин сжимается подобно пружине
- в. Мостики прикрепляются к активным центрам актина
- г. Мостики размыкаются
- 2. Сила сокращения, генерируемая мышцей, определяется:
- а. длиной активной нити
- б изменением силы, генерируемой одним мостиком
- в. количеством одновременно замкнутых мостиков
- г. упругостью миозиновой нити;

IV.Гемодинамика

- 1. Радиус сосуда уменьшился вдвое. Во сколько раз изменится объемная скорость кровотока при неизменном перепаде давления?
- 2. Вычислите давление крови на расстоянии 5 см от начала сосуда, если в начале сосуда давление составляет 10⁴ Па, его радиус 1 мм, вязкость крови 0,005 Па•с, линейная скорость движения крови 20 см / с.
- 3. Во сколько раз изменится скорость падения давления в начале диастолы, если гидравлическое сопротивление мелких сосудов увеличилось на 20 % ?
- 4. Во сколько раз гидравлическое сопротивление участка аорты (радиус аорты 1,25 см) меньше, чем гидравлическое сопротивление участка артерии той же длины (радиус артерии 2,5 мм)? Вязкость крови в артерии составляет 0,9 вязкости крови в аорте.
- 5. Во сколько раз должно увеличиться давление крови в начале крупного сосуда, чтобы при сужении его просвета на 30 % давление на выходе из сосуда и объемная скорость кровотока остались бы прежними? В отсутствие сужения падение давления в сосуде составляет 0,2 от давления в начале сосуда.

V. Радиационная биофизика

- 1. В организм человека попало 0,1 % изотопа ¹³¹I от его суточной потребности 150 мг. Сколько атомов этого изотопа распадется в организме ежесекундно в течение первого часа (считать, что в первый час скорость распада постоянна).
- 2. Радиоактивный препарат имеет постоянную распада X = = 1,44*10⁴ ч⁻¹ . Через сколько времени распадется 75 % первоначального количества ядер?
- 3. Мягкие ткани человека подвергаются радиоактивному облучению в течение 1,5 часа, при этом экспозиционная доза составила 0,6 рентгена. Чему равна поглощенная доза в радах? Какова мощность экспозиционной дозы? Как соотносятся между собой экспозиционная и биологическая дозы?
- 4. Какую опасность для человека несет выброс различных радиоактивных изотопов в атмосферу? Одинаково ли действие их на организм? Какие основные показатели определяют степень их воздействия на организм?

Пример контрольно-измерительных материалов к промежуточной аттестации

	УТВЕРЖДАЮ
Заведую	щий кафедрой
биофизики и (биотехнологии
	В.Г. Артюхов
	11.05.2019 г.

Специальность 30.05.01 Медицинская биохимия Дисциплина Б1.Б.30 Медицинская биофизика Форма обучения очная Вид контроля зачет с оценкой Вид аттестации промежуточная

Контрольно-измерительный материал № 1

- 1. Предмет и задачи медицинской биофизики.
- 2. Биофизика нервного импульса.
- 3. Фермент К⁺/Na⁺-АТФаза в плазматической мембране эритроцита совершил шесть циклов. Какое количество ионов натрия и калия при этом было активно транспортировано? Сколько энергии было при этом израсходовано, если гидролиз одного моля АТФ сопровождается освобождением 33,6 кДж? Эффективность процесса энергетического сопряжения условно считать 100 %.

Преподаватель О.В. Башарин

19.3.4. Перечень вопросов для контрольной работы

- 1. Предмет и задачи медицинской биофизики.
- 2. Проблемы современной медицинской биофизики.
- 3. Перспективы развития медицинской биофизики.
- 4. Общие вопросы механики и гемодинамики.
- 5. Законы движения жидких тел.
- 6. Основы механики жидкостей: напряжение, гидростатическое давление, вязкость.
- 7. Виды вязкости.
- 8. Закон Ньютона в реологии.
- 9. Ньютоновские и неньютоновские жидкости.
- 10. Теорема Бернулли.
- 11. Движение жидкости в трубках.
- **12.** Пуазелевское течение жидкости в трубке, число Рейнольдса, турбулентность при течении в трубке.
 - 13. Течение жидкости в сужающейся, изогнутой трубке, обтекание тел.
 - 14. Гемодинамические основы кровообращения.
 - 15. Линейная и объемная скорость кровотока.
 - 16. Методы измерения скорости движения крови.
 - 17. Градиент скорости течения крови.
 - 18. Методы определения вязкости крови.
 - 19. Биофизические свойства белка.
 - 20. Фолдинг белков. Опыт Анфинсена.
 - 21. Парадокс Левенталя, его решение.
 - 22. Этапы фолдинга.

- 23. Шапероны, их функции.
- 24. Фолдазы, их функции.
- 25. Болезни человека, связанные с нарушением фолдинга.
- 26. Методы молекулярной биофизики в клинической практике.
- 27. Теоретические основы метода электрофореза.
- 28. Теоретические основы метода гель-фильтрации.
- 29. Теоретические основы метода ультрацентрифугирования.
- 30. Теоретические основы люминесцентного анализа.
- 31. Теоретические основы метода биохемилюминесценции.
- 32. Индуцированная хемилюминесценция.
- 33. Кинетика хемилюминесценции.
- 34. Свободные радикалы в биосистемах. Их роль в норме и при патологии.
- 35. Активные формы кислорода.
- 36. Пероксидное окисление липидов.
- 37. Оксид азота и его биологическая роль.
- 38. Антиоксиданты, механизм действия.
- 39. Ферменты антиоксидантной системы, катализируемые ими реакции.
- **40.** Болезни человека, связанные с нарушением функционирования антиоксидантной системы

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме письменных работ (выполнение практико-ориентированных заданий, лабораторные работы) и устных отчетов о выполнении лабораторной работы. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень сформированности умений и навыков.

При оценивании используются количественная шкала оценок. Критерии оценивания приведены выше.